My articles and publications --(full text, click here. You may be asked to sign up --it is free) --Mis publicaciones (texto completo: http://ipn.academia.edu/AdolfoGuzman Quizá le pida suscribirse --es gratis) Mi página Web -- (click here) -- My Web page (http://alum.mit.edu/www/aguzman). ALGUNOS VIDEOS SOBRE LO QUE HAGO. Conferencia 'Ciudad inteligente, con conectividad y tecnología' (oct. 2010), parte 1 (15min), parte 2 (8min), parte 3 (9min), parte 4 (2min). Entrevista por redCudiMéxico, 2012: aquí (11 min). Avances en Inteligencia Artificial, entrevista en la Univ. IBERO, Puebla, 2013. Pulse aquí (53min). Video in the series "Personalities in the history of ESIME" (for the 100 years anniversary of ESIME-IPN, in Spanish) about Adolfo Guzman": 2014, click here. (1h)
Entrevista "La visión de los egresados del IPN, a 80 años de la creación del IPN y 100 años de la creación de la ESIME, 2014: ver en youtube (1h). Seminario sobre "Big Data" (la Ciencia de Datos). 2014. Pulse aquí (56min). Seminar on "Big Data", in English, 2014. Click here (56min). Algunos trabajos sobre Minería de Datos y sus Aplicaciones (CIC-IPN, 2016): pulse aquí (5min). El auge y el ocaso de las máquinas de Lisp (Plática en la Reunión Anual 2016 de la Academia Mexicana de Computación): pulse aquí (56min). Entrevista sobre la funcionalidad y competitividad de Hotware 10: 2016, aquí (6 min). Adolfo Guzmán Arenas, Ingeniero Electrónico e investigador del Centro de Investigación en Computación del IPN, conversó sobre su trayectoria y la importancia de las ciencias aplicadas para el desarrollo del país. 2017, Canal 11, Noticias TV (30min). Cómo se construyó la primera computadora en el mundo de procesamiento paralelo con Lisp. Marzo 2018. https://www.youtube.com/watch?v=dzyZGDhxwrU (12 min). Charla "Historias de éxito en la computación mexicana", ciclo Códice IA. Entrevista a A. Guzmán, "Entre la vida y la academia": https://bit.ly/3sIOQBc (45 min). El CIC cumple 25 años. Pulse aquí (51min. Habla Adolfo: "Pasado y futuro del CIC": minutos 13.57 a 22.70 ).
Perfil en ResearchGate -- Adolfo Guzman-Arenas My URL in Google Scholar: http://scholar.google.com/citations?user=Nw5lSdEAAAAJ My ORCID number 0000-0002-8236-0469. Scopus Author ID 6602302516.

Follow me on Academia.edu

Modelo para la predicción de la demanda y el rebalanceo dinámico del sistema de bicicletas públicas de la Ciudad de México

Tesis de Maestría de Carlos Roberto Esquivel Briseño, Centro de Investigación en Computación del IPN, enero 2018. To read his thesis: click here.

Abstract: Public Bike Sharing Systems(PBS) become more popular recently in many metropolitan areas worldwide, these systems provide an economic, versatile and environmentally friendly tansportation, which also brings benefits to public health. Because of the mobility of people, some stations of the system are left without bicycles, Systems operators must balance the system and guarantee a certain level of availability. This work is based on the use of previous results that address the problem of rebalancing PBS, focusing these efforts on the reality of the public bicycle system of Mexico City called ECOBICI. The first task was the construction of a database that contains the journey’s information in ECOBICI since February 2010, with an amount of more than forty-five million trips made to date, weather data per hour in each suburb in Mexico City, the status of each station including information of how many bicycles are available minute by minute. With the above information it was possible to propose a set of solutions based on two machine learning techniques to solve the problem of calculating the necessary inventory per station; these techniques were an ARIMA model and a Random Forest, in the first method the historical data of the trips were used to treat them as a time series; As for the random forest, besides contemplating the historical information of the trips, A feature vector was build with online and offline information like weather and transit, with the intention of strengthening the model, finally the author of this work raised an own method to carry out the estimation of necessary inventories, but unlike the previous two, which are based on the history of trips, the new method takes advantage of the historical information of the status of the stations. Finally, a brute force algorithm is proposed for the establishment of rebalancing routes based on the construction of a reorder graph that incorporates the information obtained by predicting the necessary inventory per station; this algorithm could seem intractable in a system with many nodes and edges, however heuristics are proposed to perform spatial and temporal pruning in the reorder graph, with the purpose of making spatial and temporal pruning taking advantage of the information a priori with the information about the system, this information was known thanks to the support of the Mobility Analysis System (SAM), developed in the Computer Research Center of the IPN by a team of students and professors, including the author of this work.

Keywords: Rebalancing, Inventory Prediction, Shared Bicycle Systems, ECOBICI.
En el centro, Carlos Esquivel con su jurado. Enero 2018, Instituto Politécnico Nacional.


No hay comentarios: